Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery uri icon

resumo

  • The synthesis of hydrophilic graphene-based yolk-shell magnetic nanoparticles functionalized with copolymer pluronic F-127 (GYSMNP@PF127) is herein reported to achieve an efficient multifunctional biomedical system for mild hyperthermia and stimuli-responsive drug delivery. In vitro tests revealed the extraordinary ability of GYSMNP@PF127 to act as smart stimuli-responsive multifunctional nanomedicine platform for cancer therapy, exhibiting (i) an outstanding loading capacity of91% (w/w,representing 910μgmg−1) of the chemotherapeutic drug doxorubicin, (ii) a high heating efficiency under an alternating (AC) magnetic field (intrinsic power loss ranging from 2.1–2.7nHm2kg−1), and (iii) a dual pH and thermal stimuli-responsive drug controlled release (46% at acidic tumour pH vs 7% at physiological pH) under AC magnetic field, in just 30min. Additionally, GYSMNP@PF127 presents optimal hydrodynamic diameter (DH=180nm) with negative surface charge, high haemocompatibility for blood stream applications and tumour cellular uptake of drug nanocarriers. Due to its physicochemical, magnetic and biocompatibility properties, the developed graphene-based magnetic nanocarrier shows high promise as dual exogenous (AC field)/endogenous (pH) stimuli-responsive actuators for targeted thermo-chemotherapy, combining magnetic hyperthermia and controlled drug release triggered by the abnormal tumour environment. The presented strategy and findings can represent a new way to design and develop highly stable added-value graphene-based nanostructures for the combined treatment of cancer.

autores

  • Cardenosa, Vanessa
  • Pinho, S.
  • Raquel O. Rodrigues
  • Gomes, H.T.
  • Baldi, Giovanni
  • Doumett, Saer
  • Garcia-Hevia, Lorena
  • Gallo, J.
  • Bañobre-López, M.
  • Dražic, Goran
  • Pinto, M.A.
  • Ana I. Pereira
  • A. M. T. Silva

data de publicação

  • janeiro 1, 2018