Dual Coulomb Counting Extended Kalman Filter for Battery SOC Determination Chapter Conference Paper uri icon


  • The importance of energy storage continues to grow, whether in power generation, consumer electronics, aviation, or other systems. Therefore, energy management in batteries is becoming an increasingly crucial aspect of optimizing the overall system and must be done properly. Very few works have been found in the literature proposing the implementation of algorithms such as Extended Kalman Filter (EKF) to predict the State of Charge (SOC) in small systems such as mobile robots, where in some applications the computational power is severely lacking. To this end, this work proposes an implementation of the two algorithms mainly reported in the literature for SOC estimation, in an ATMEGA328P microcontroller-based BMS. This embedded system is designed taking into consideration the criteria already defined for such a system and adding the aspect of flexibility and ease of implementation with an average error of 5% and an energy efficiency of 94%. One of the implemented algorithms performs the prediction while the other will be responsible for the monitoring.

publication date

  • 2021