Volatile-Olfactory Profiles of cv. Arbequina Olive Oils Extracted without/with Olive Leaves Addition and Their Discrimination Using an Electronic Nose uri icon

resumo

  • -e authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support by national funds FCT/MCTES to CIMO (UIDB/00690/2020), CEB (UIDB/04469/2020), REQUIMTE-LAQV (UIDB/50006/2020) units, and the Associate Laboratories for Green Chemistry-LAQV (UIDB/50006/2020) and SusTEC (LA/P/0007/2020), as well as to BioTecNorte operation (NORTE- 01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte. ´Itala M.G. Marx also acknowledges the PhD research grant (SFRH/BD/137283/2018) provided by FCT. Nuno Rodrigues likes to thank national funding by FCT—Foundation for Science and Technology, P.I., through the institutional scientific employment program contract.
  • Oils from cv. Arbequina were industrially extracted together with olive leaves of cv. Arbequina or Santulhana (1%, w/w), and their olfactory and volatile profiles were compared to those extracted without leaves addition (control). -e leaves incorporation resulted in green fruity oils with fresh herbs and cabbage olfactory notes, while control oils showed a ripe fruity sensation with banana, apple, and dry hay grass notes. In all oils, total volatile contents varied from 57.5 to 65.5 mg/kg (internal standard equivalents), being aldehydes followed by esters, hydrocarbons, and alcohols the most abundant classes. No differences in the number of volatiles were observed. -e incorporation of cv. Arbequina or Santulhana leaves significantly reduced the total content of alcohols and esters (minus 37–56% and 10–13%, respectively). Contrary, cv. Arbequina leaves did not influence the total content of aldehydes or hydrocarbons, while cv. Santulhana leaves promoted a significant increase (plus 49 and 10%, respectively). -us, a leaf-cultivar dependency was observed, tentatively attributed to enzymatic differences related to the lipoxygenase pathway. Olfactory or volatile profiles allowed the successful unsupervised differentiation of the three types of studied cv. Arbequina oils. Finally, a lab-made electronic nose was applied to allow the nondestructive discrimination of cv. Arbequina oils extracted with or without the incorporation of olive leaves (100% and 99 ± 5% of correct classifications for leave-one-out and repeated K-fold crossvalidation variants), being a practical tool for ensuring the label correctness if future commercialization is envisaged. Moreover, this finding also strengthened that olive oils extracted with or without olive leaves incorporation possessed quite different olfactory patterns, which also depended on the cultivar of the olive leaves.

data de publicação

  • janeiro 2021