Biphasic oxidative denitrogenation with H2O2 of a simulated fuel using sustainable carbon nanotube catalysts
Artigo de Conferência
Visão geral
Pesquisas
Informação adicional documento
Ver Todos
Visão geral
resumo
The presence of nitrogenated compounds in liquid fuels (e.g. quinoline (QN), azapyrene, pyrrole, indole or carbazole) is associated with a series of environmental and health issues [1], as upon their combustion, noxious NOx gases are formed. Typically, those heteroatoms are removed by hydrodenitrogenation (HDN), a process based on the application of H2 under high temperature and pressure [2]. However, due to the type of nitrogenated compounds found in crude oils, which consist mostly of cyclic structures containing two double bonds between N and C atoms, HDN fails to efficiently remove nitrogen without affecting the properties of the fuel [1]. Thus, alternatives to HDN have been sought, the removal of those nitrogenated compounds via oxidative processes being found as promising [1]. In oxidative denitrogenation (ODN), nitrogen-based compounds are oxidized towards more polar compounds, which can be further removed from the fuel with an extractant [3]. Furthermore, another contemporary issue is the production and accumulation of residues, especially plastic solid waste (PSW). PSW can be used as precursors for the synthesis of sustainable carbon nanotubes (CNTs), which could be further applied as catalysts in ODN. In this work, a nitrogen-rich fuel was simulated by dissolving QN (CQN-i-octane,0 = 1 g L-1) in 2,2,4-trimethylpentane (i-octane), and ODN was carried out using H2O2 as oxidant and CNTs (derived from a mixture of polymers simulating PSW) as catalysts, under a biphasic system (oxidation and extraction co-occurrence).
This work was financially supported by project "PLASTIC_TO_FUEL&MAT – Upcycling Waste Plastics into Fuel and Carbon Nanomaterials" (PTDC/EQU-EQU/31439/2017), Base Funding - UIDB/50020/2020 of the Associate Laboratory LSRE-LCM - funded by national funds through FCT/MCTES (PIDDAC), and CIMO (UIDB/00690/2020) through FEDER under Program PT2020. Fernanda F. Roman acknowledges the national funding by FCT, Foundation for Science and Technology, and FSE, European Social Fund, through the individual research grant SFRH/BD/143224/2019.