Non-Destructive Imaging and Spectroscopic Techniques for Assessment of Carcass and Meat Quality in Sheep and Goats: A Review uri icon

abstract

  • Authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support by national funds FCT/MCTES to CIMO (UIDB/00690/2020); Laboratory of Carcass and Meat Quality of Agriculture School of Polytechnic Institute of Bragança ‘Cantinho do Alfredo’. The authors A. Teixeira and S. Rodrigues are members of the Healthy Meat network, funded by CYTED (ref. 119RT0568). CECAV authors are thankful to the project UIDB/CVT/00772/2020 funded by the Foundation for Science and Technology (FCT, Portugal).
  • In the last decade, there has been a significant development in rapid, non-destructive and non-invasive techniques to evaluate carcass composition and meat quality of meat species. This article aims to review the recent technological advances of non-destructive and non-invasive techniques to provide objective data to evaluate carcass composition and quality traits of sheep and goat meat. We highlight imaging and spectroscopy techniques and practical aspects, such as accuracy, reliability, cost, portability, speed and ease of use. For the imaging techniques, recent improvements in the use of dual-energy X-ray absorptiometry, computed tomography and magnetic resonance imaging to assess sheep and goat carcass and meat quality will be addressed. Optical technologies are gaining importance for monitoring and evaluating the quality and safety of carcasses and meat and, among them, those that deserve more attention are visible and infrared reflectance spectroscopy, hyperspectral imagery and Raman spectroscopy. In this work, advances in research involving these techniques in their application to sheep and goats are presented and discussed. In recent years, there has been substantial investment and research in fast, non-destructive and easy-to-use technology to raise the standards of quality and food safety in all stages of sheep and goat meat production. © 2020 by the authors.

publication date

  • January 2020

published in