Synthesis, molecular Docking and biological evaluation of new 1-Aryl-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenylureas as Potent Type II VEGFR-2 Tyrosine Kinase inhibitors Artigo de Conferência uri icon

resumo

  • The vascular endothelial growth factor receptor 2 (VEGFR-2) is a tyrosine kinase receptor, expressed primarily in endothelial cells, and is activated by the specific binding of VEGF to the VEGFR-2 extracellular regulatory domain. Once activated, VEGFR-2 undergoes autophosphorylation, triggering signaling pathways leading to endothelial cell proliferation and subsequent angiogenesisY1 Small molecules may act as inhibitors by competing for the ATP-binding s'1te of the VEGFR-2 intracellular tyrosine kinase domain, thereby preventing the intracellular signa ling that leads to angiogenesis. [ZJ Here, we present the synthesis of new 1-aryl-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas la-c, as potent type 11 VEGFR-2 inhibitors based on molecular docking (Figure A) and biological evaluation including enzymatic assays using the VEGFR-2 tyrosine kinase domain (ICso=l0-28 nM) and studies in human umbilical vein endothelial cells (HUVECs). The latter included cell viability (MTS), proliferation (BrdU) and Western blot for total and phosphorylated VEGFR-2 (Figure B). The predicted docked poses were analyzed in detail and a plausible explanation for compounds 1 potency was obtained base9 on the simultaneous presence of a S-linker and the arylurea moiety in the meta position as a new substitution pattern for the type 11 VEGFR-2 inhibitors. These chemical features place the thieno[3,2-b]pyridine and the terminal aryl ring in close superimposition to a pyrrolo[3,2-d]pyrimidine derivative. The presence of hydrofobic substituents (F and Me) in the terminal aryl ring is also important. For these compounds a significant inhibition in HUVECs proliferation upon VEGF stimulation was observed at low concentrations (0.5-1.0 IJ.M) without affecting cell viability. Westernblot analysis demonstrated that compounds 1 significantly the inhibited VEGFR-2 phosphorylation at 1.0 jlM, thus confirming their anti-angiogenic potential.

data de publicação

  • janeiro 1, 2014