Forecasting Omicron Variant of Covid-19 with ANN Model in European Countries – Number of Cases, Deaths, and ICU Patients Chapter Conference Paper uri icon

abstract

  • Accurate predictions of time series are increasingly required to support judgments in a variety of decisions. Several predictive models are available to support these predictions, depending on how each field offers a data variety with varied behavior. The use of artificial neural networks (ANN) at the beginning of the COVID-19 pandemic was significant since the tool may offer forecasting data for various conditions and hence assist in governing critical choices. In this context, this paper describes a system for predicting the daily number of cases, fatalities, and Intensive Care Unit (ICU) patients for the next 28 days in five European countries: Portugal, the United Kingdom, France, Italy, and Germany. The database selection is based on comparable mitigation processes to analyze the impact of safety procedure flexibilization with the most recent numbers of COVID-19. Additionally, it is intended to check the algorithm’s adaptability to different variants throughout time. The network’s input data has been normalized to account for the size of the countries in the study and smoothed by seven days. The mean absolute error (MAE) was employed as a comparing criterion of two datasets, one with data from the beginning of the pandemic and another with data from the last year, since all variables (cases, deaths, and ICU patients) may be tendentious in percentage analysis. The best architecture produced a general MAE prediction for the 28 days ahead of 256,53 daily cases, 0,59 daily deaths, and 1,63 ICU patients, all numbers normalized by million people.
  • The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021).

publication date

  • 2022