Stress Concentration on PDMS: An evaluation of three numerical constitutive models using digital image correlation uri icon

abstract

  • The authors acknowledge the projects EXPL/EME-EME/0732/2021 and 2022.06207.PTDC for the financial support, through national funds (OE), within the scope of the Scientific Research and Technological Development Projects (IC&DT) program in all scientific domains (PTDC), PORTUGAL 2020 Partnership Agreement, European Regional Development Fund (FEDER), via the Foundation for Science and Technology, I.P. (FCT, I.P) and the R&D Units projects (UIDB/00690/2020 and UIDP/00690/2020) (CIMO), SusTEC (LA/P/0007/2020), UIDB/ 04077/2020, UIDP/04077/2020, UIDB/04436/2020 and UIDB/00532/ 2020. Andrews Souza acknowledges FCT for the Ph.D. scholarship 2021.07961.BD.
  • The examination of hyperelastic materials’ behavior, such as polydimethylsiloxane (PDMS), is crucial for applications in areas as biomedicine and electronics. However, the limitations of hyperelastic models for specific stress scenarios, with stress concentration, are not well explored on the literature. To address this, firstly, three constitutive models were evaluated (Neo-Hookean, Mooney-Rivlin, and Ogden) using numerical simulations and Digital Image Correlation (DIC) analysis during a uniaxial tensile test. The samples were made of PDMS with stress concentration geometries (center holes, shoulder fillets, and edge notches). Results of ANOVA analysis showed that any of the three models can be chosen for numerical analysis of PDMS since no significant differences in suitability were found. Finally, the Ogen model was chosen to obtain the stress concentration factors for these geometries, a property which characterize how discontinuities change the maximum stress supported by an element. Our study provides new values for variables needed to analyze and design hyperelastic elements and produce a foundation for understanding PDMS stress-strain behavior.

publication date

  • October 1, 2023