Bacterial disease induced changes in fungal communities of olive tree twigs depend on host genotype uri icon

resumo

  • In nature, pathogens live and interact with other microorganisms on plant tissues. Yet, the research area exploring interactions between bacteria-fungi and microbiota-plants, within the context of a pathobiome, is still scarce. In this study, the impact of olive knot (OK) disease caused by the bacteria Pseudomonas savastanoi pv. savastanoi (Psv) on the epiphytic and endophytic fungal communities of olive tree twigs from three different cultivars, was investigated in field conditions. The ITS-DNA sequencing of cultivable fungi, showed that OK disease disturbs the resident fungal communities, which may reflect changes in the habitat caused by Psv. In particular, a reduction on epiphyte abundance and diversity, and changes on their composition were observed. Compared to epiphytes, endophytes were less sensitive to OK, but their abundance, in particular of potential pathogens, was increased in plants with OK disease. Host genotype, at cultivar level, contributed to plant fungal assembly particularly upon disease establishment. Therefore, besides fungi - Psv interactions, the combination of cultivar - Psv also appeared to be critical for the composition of fungal communities in olive knots. Specific fungal OTUs were associated to the presence and absence of disease, and their role in the promotion or suppression of OK disease should be studied in the future.
  • This research was partially supported by FEDER funds through COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia) in the framework of the project EXCL/AGR-PRO/0591/2012. This work was supported by FCT under the project UID/ MULTI/04046/2013. T. Gomes thanks FCT, POPH-QREN and FSE for PhD SFRH/BD/98127/2013 grant; and also the COST Action FA1405 for a short-term scientific mission (STSM) grant.

autores

  • Baptista, P.
  • Faculdade de Farmácia
  • Gomes, T
  • Bennett, Alison E.

data de publicação

  • abril 2019