Imaging of healthy and malaria-mimicked red blood cells in polydimethylsiloxane microchannels for determination of cells deformability and flow velocity Book Conference Paper uri icon

abstract

  • Imaging analysis techniques have been extensively used to obtain crucial information on blood phenomena in the microcirculation. In the present study, it is intended to mimic the effects of malaria on the red blood cells (RBCs), by changing their properties using a different concentration of glutaraldehyde solution. The effects of the disease in stiffing RBCs were evaluated using polydimethylsiloxane microchannels that comprise contractions with 10 μm width and measuring the cells deformability and the flow velocity in healthy and modified conditions. The obtained results show a decrease in the RBCs deformability and in the flow velocity with the presence of glutaraldehyde, when compared to the behavior of healthy RBCs samples. Therefore, it can be concluded that, using image analysis (ImageJ & PIVLab), it is possible to measure the deformability of the RBCs and the flow velocity and, consequently, obtaining a correlation between the difference of velocities/deformabilities in the microchannels. In the future, this correlation can be used to relate the RBCs behavior with the various stages of malaria. This study can be a starting point for establishing the development of new malaria diagnostic systems towards point-of-care lab-on-a-chip devices.
  • This work was supported by FCT with the reference project UID/EEA/04436/ 2013, by FEDER funds through the COMPETE 2020 – Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01- 0145-FEDER- 006941. S.O. Catarino thanks the FCT for the SFRH/BPD/108889/2015 grant, supported by national funds from Ministérios da Ciência, Tecnologia e Ensino Superior and by FSE through the POCH - Programa Operacional Capital Humano. The authors thank Diana Pinho from the IP Bragança for providing the blood samples and for the support in the experimental tests.

publication date

  • 2018