Hemi-synthesis of novel (S)-carvone hydrazone from Carum carvi L. essential oils: Structural and crystal characterization, targeted bioassays and molecular docking on human protein kinase (CK2) and Epidermal Growth factor Kinase (EGFK) uri icon

abstract

  • Polyfunctional N,O,O,N-type ligands such as the oxalyl dihydrazide (ODH) may induce formation of mono- , di-, and polynuclear complexes with natural monoterpene ketones, involving ligand bridging and Oxo- bridging. In this context, a novel chiral dihydrazone is designed through hemi-synthesis process by re- acting oxalyldihydrazide (ODH) with ( s )-carvone, the major compound of caraway’s seeds essential oil. The C = N imine bi-condensation is performed without prior isolation of the natural ( s )-carvone and the resulting ( s )-carvone dihydrazone (s-CHD) is structurally characterized by Single-crystal X-ray diffrac- tion, 2D-NMR spectroscopy and chiral LCMS analysis to confirm the formation of a single pure enan- tiomer. In -vitro cell-based assays were conducted on normal fibroblast (L929) using a presBlue (PB) flu- orescence quantification method of cell-viability and by sulforhodamine B calorimetric cytotoxicity as- says to determine the anti-proliferative effect on four human tumoral lines (NCI-H460, Hela, HepG2 and MCF-7) and normal PLP2. Anti-inflammatory assays were determined through NO production by Maurine LPS-stimulated macrophages (RAW 264.7). The ( s )-CHD has no effect on normal cells viability ( > 88%) and PLP2 (GI50 = 326 ug/mL), while a moderate ( ∼55%) to significant ( ∼63%) antigrowth potential was recorded against HepG2, Hela and MCF-7 tumor cell lines, where RAW 264.7 was feebly sensitive. A molecular docking was performed using Autodock vina software on the protein kinase CK2 and Epi- dermal Growth factor Kinase proteins EGFK and the dock scores allowed to identify significant bind- ing affinities (lower G and Ki values) and potential hydrophilic/hydrophobic interactions with ( s )-CHD comparing to the clinical ellipticine as potential ligands. Molecular docking suggests that ( s )-CHD pos- sesses high affinity towards the kinase domain receptors CK2 and EGFR, being able to bind to the ATP region.
  • Thanks are due to the Research Center Scientific and Technical in Analyzes Physico-Chimiques CRAPC Algerian Directorate for research DGRSDT for the financial support. The authors thanks Fundação para a Ciência e a Tecnologia (FC&T, Lisbon) for financial support through projects PTDC/MEC–ONC/29327/2017 and PTDC/EQU-EQU/32473/2017. We are thankful to NOVA University of Lisbon (FCT/UNL) for the financial support from Erasmus + EU international credit mobility 2017–2019. the laboratory for Green Chemistry LAQV-REQUIMTE FCT/MCTES (UID/QUI/50006/2019) is co-financed by the ERDF and the chemistry department for providing the instruments support.

publication date

  • December 1, 2021