Novel Hydroxy-9H-xanthen-9-ones derivatives: synthesis and bioactive properties
Conference Paper
Overview
Overview
abstract
9H-Xanthen-9-ones commonly referred as xanthones are a large group of natural heterocyclic compounds with significant bioactive properties (e.g. anti-inflammatory, antibacterial, antimalarial, cytotoxicity and radical scavenging activity).1 In order to explore some of these biological assessments, we developed two methodologies for the synthesis of novel hydroxylated 2,3-diarylxanthone derivatives. The first synthetic route is based on the Heck reaction of the 3-bromochromone 2 followed by aldol condensation and electrocyclisation/oxidation processes to afford the 2,3-diaryl-9H-xanthen-9-ones 1. An efficient and more general approach is the Heck reaction of 3-bromo-2-styrylchromones 3 with styrenes as olefins followed by the in situ electrocyclisation/oxidation processes.2 Pharmacological studies involving the hydroxy-9H-xanthen-9-ones 1,3 which are obtained after cleavage of the methyl group, will also be presented and discussed.