Comparison of Neural Network Architectures for Diabetes Prediction uri icon

resumo

  • Diabetes represents a significant global health challenge, with millions of individuals affected and substantial impacts on healthcare systems. In this study, we compare two neural network architectures for diabetes prediction: the Feedforward Neural Network (FFNN) and the Cascade-Forward Backpropagation Neural Network (CFBPNN). Utilizing the Diabetes Prediction Dataset, comprising 100,000 samples, and after a balanced result, 17,000 samples were obtained. The networks are trained using the Levenberg-Marquardt and Resilient Backpropagation algorithms, and performance metrics, including precision, sensitivity, specificity, accuracy, F1-score, and computational time, are evaluated. Results indicate that the FFNN architecture paired with the Levenberg-Marquardt algorithm demonstrates superior diagnostic prediction accuracy with 91,10%. However, this comes at the cost of longer computational time compared to the CFBPNN.

autores

  • Nathan Antonio Guerreiro
  • Rui Nijo

data de publicação

  • janeiro 1, 2025