An Optimization Approach for the Inverse Kinematics of a Highly Redundant Robot Book Conference Paper uri icon

abstract

  • This paper describes a robot with 12 degrees of freedom for pick-and-place operations using bricks. In addition, an optimization approach is proposed, which determines the state of each joint (that establishes the pose for the robot) based on the target position while minimizing the effort of the servomotors avoiding the inverse kinematics problem, which is a hard task for a 12 DOF robot manipulator. Therefore, it is a multi-objective optimization problem that will be solved using two optimization methods: the Stretched Simulated Annealing method and the NSGA II method. The experiments conducted in a simulation environment prove that the proposed approach is able to determine a solution for the inverse kinematics problem. A real robot formed by several servomotors and a gripper is also presented in this research for validating the solutions.

publication date

  • 2016