Time series prediction by Perturbed Fuzzy Model Artigo de Conferência uri icon

resumo

  • This paper presents a fuzzy system approach to the prediction of nonlinear time series and dynamical systems based on a fuzzy model that includes its derivative information. The underlying mechanism governing the time series, expressed as a set of IF–THEN rules, is discovered by a modified structure of fuzzy system in order to capture the temporal series and its temporal derivative information. The task of predicting the future is carried out by a fuzzy predictor on the basis of the extracted rules and by the Taylor ODE solver method. We have applied the approach to the benchmark Mackey-Glass chaotic time series.

data de publicação

  • janeiro 1, 2007