Deterministic Classifiers Accuracy Optimization for Cancer Microarray Data
Artigo de Conferência
Visão geral
Pesquisas
Identidade
Informação adicional documento
Ver Todos
Visão geral
resumo
The objective of this study was to improve classification accuracy in cancer microarray gene expression data using a collection of machine learning algorithms available in WEKA. State of the art deterministic classification methods, such as: Kernel Logistic Regression, Support Vector Machine, Stochastic Gradient Descent and Logistic Model Trees were applied on publicly available cancer microarray datasets aiming to discover regularities that provide insights to help characterization and diagnosis correctness on each cancer typology. The implemented models, relying on 10-fold cross-validation, parameterized to enhance accuracy, reached accuracy above 90%. Moreover, although the variety of methodologies, no significant statistic differences were registered between them, at significance level 0.05, confirming that all the selected methods are effective for this type of analysis.